Abstract

ABSTRACT An alumina-toughened zirconia (ATZ) material, fabricated using a procedure consisting of the common sintering of two different zirconia powders, was tested using the ball-on-disc method in a temperature range between room temperature and 400°C. Tetragonal zirconia balls were used as a counterpart. Two different types of microstructure were designed, one consisting of separated alumina inclusions in a zirconia matrix and another one which was a combination of two continuous phases, penetrating the whole volume of the composite. It was detected that at elevated temperatures both materials showed a distinct decrease in the wear rate. Composite with a low alumina content showed minimal wear rate at 300°C and composite with higher amount of alumina showed it at 400°C. There are some observations that this minimal wear rate result is connected with a pseudoplastic behaviour of a layer formed between co-operating elements of tribological pair. This layer is composed of the debris of both, sample and counterpart, and its behaviour during sliding is connected with the mean grain size of this debris which is correlated with the mean grain size of sintered material.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call