Abstract

The wear mechanism of titanium alloy lubricated with fixed amount of palm olein was investigated using modified pin-on-disk tester. Titanium alloy has high strength-to-weight ratio and excellent mechanical properties such as superb corrosion resistance. This make titanium alloy was chosen for the critical or high temperature/pressure application such as turbine engine parts. Palm oil was chosen for the development of bio-lubricant to replace or minimize the usage mineral oil base lubricant. Palm oil is a vegetable oil which is non-toxic to human and has high decomposition rate. These factors give advantages to palm oil to be produce as an industrial lubricant. The experimental works were performed using a pin-on-disk tribotester, using titanium as the material for both flat ended pin and grooved disk. The test were implemented by dripping 5ml of RBD palm olein as a lubricating oil on the sliding surface at constant speed, which was 0.5m/s using different loads, which were 5N, 20N, 40N and 80N. In this study, the wear rate of the pin and friction coefficient were investigated. The weight loss and surface roughness before and after experiment were analyzed. All the results obtained were compared to commercial hydraulic oil and additive-free paraffinic mineral oil. From the analysis, the friction coefficient acquired with lubrication of RBD palm olein was the lowest compared to commercial hydraulic oil and additive-free paraffinic mineral oil at all loads applied. It could be concluded that RBD palm olein has good lubricity performance and has the capability to be developed as a lubricant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call