Abstract

Natural diamond tool is quickly worn out while cutting a workpiece made of a tungsten-based alloy. This paper presents a new approach to reduce tool wear: ultrasonic vibration cutting of a workpiece made of a tungsten-based alloy based on gas–liquid atomization cooling. An atomizer is a device which mixes carbon dioxide gas with vegetable oil and changes the liquid into minute droplets, which are carried by a stream of gas. Atomizer is also a device that incorporates a venture device to translate liquid into a gas stream. The atomized minute droplets act as the cooling and lubricating medium to protect the tools. The system is designed to ensure that droplets can spread all over the surface of a work piece. At a constant spindle speed, feed rate, and cutting depth, the experiments were carried out for investigating the effects of the tool vibration parameters, carbon tetrachloride liquid flow rate, carbon dioxide gas flow, and gas–liquid mass ratio on the tool wear. The experiments showed that the technology of ultrasonic vibration with gas–liquid atomization cooling effectively prolongs the tool life in cutting tungsten-based alloy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.