Abstract

Herein, the sliding wear behavior of AlSi10Mg samples realized using laser‐based powder bed fusion (LPBF) is investigated via pin‐on‐disc (PoD) tests, before and after T6 heat treatment. The changes in the microstructure, density, and hardness induced by heat treatment are correlated with the tribological behavior of the alloy. Furthermore, short wear tests are conducted and the resulting wear tracks are investigated through scanning electron microscopy (SEM), equipped with an energy‐dispersive spectroscopy (EDS) microprobe to elucidate how the wear mechanisms evolve with sliding distance. For comparison, gravity cast (GC) AlSi10Mg samples are also characterized and tested. The as‐built additive manufacturing (AM) sample exhibits the lowest wear rate and coefficient of friction because of its high hardness and relative density, whereas the heat‐treated sample shows the worst behavior in comparison with the GC samples. The results suggest a significant influence of porosity on the wear behavior of AM alloys.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.