Abstract

Wear-accelerated corrosion rates at constant anodic potentials were evaluated for unimplanted and nitrogen-ion-implanted surgical Ti-6Al-4V while wearing against ultrahigh-molecular-weight polyethylene at stress levels up to 6.90 MPa (1000 psi). The ion implantation processing was found to reduce the wear corrosion rates in both saline and serum solutions at all applied stress levels. During wear testing, all of the ion-implanted surfaces remained visually unchanged from the polished condition. However, many of the unimplanted surfaces developed damage zones characterized by wear tracks and black wear debris. A surface-damage mechanism is proposed and discussed which involves disruption of the Ti-6Al-4V protective oxide film, subsequent entrapment of oxide particles in the polyethylene, then self-perpetuating damage due to the abrasive action of the embedded particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.