Abstract

BackgroundRisk factors for the etiology of post-weaning diarrhea, a major problem in swine industry associated with enormous economic losses, remain to be fully elucidated. In concordance with the ethical concerns raised by animal experiments, we developed a new in vitro model of the weaning piglet colon (MPigut-IVM) including a mucin bead compartment to reproduce the mucus surface from the gut to which gut microbes can adhere.ResultsOur results indicated that the MPigut-IVM is able to establish a representative piglet archaeal and bacterial colon microbiota in terms of taxonomic composition and function. The MPigut-IVM was consequently used to investigate the potential effects of feed deprivation, a common consequence of weaning in piglets, on the microbiota. The lack of nutrients in the MPigut-IVM led to an increased abundance of Prevotellaceae and Escherichia-Shigella and a decrease in Bacteroidiaceae and confirms previous in vivo findings. On top of a strong increase in redox potential, the feed deprivation stress induced modifications of microbial metabolite production such as a decrease in acetate and an increase in proportional valerate, isovalerate and isobutyrate production.ConclusionsThe MPigut-IVM is able to simulate luminal and mucosal piglet microbiota and represent an innovative tool for comparative studies to investigate the impact of weaning stressors on piglet microbiota. Besides, weaning-associated feed deprivation in piglets provokes disruptions of MPigut-IVM microbiota composition and functionality and could be implicated in the onset of post-weaning dysbiosis in piglets.

Highlights

  • Risk factors for the etiology of post-weaning diarrhea, a major problem in swine industry associated with enormous economic losses, remain to be fully elucidated

  • Piglets approximately lose about 100–250 g body weight the first day after weaning which directly affects the total days to market [13]

  • Regarding its numerous reported effects, the weaning-associated feed deprivation period could play a role in the etiology of post-weaning intestinal dysbiosis due to the depletion of nutrients and the increased degradation of mucins and lead to a higher risk of developing enteric infections called post-weaning diarrhea

Read more

Summary

Introduction

Risk factors for the etiology of post-weaning diarrhea, a major problem in swine industry associated with enormous economic losses, remain to be fully elucidated. The lack of nutrients in the intestine of piglets may contribute to intestinal inflammation and changes in intestinal morphology such as reduced villus height and increased intestinal permeability which facilitate the crossing of the mucus layer and the intestinal epithelial barrier by toxins and bacteria [3, 12, 16] This mucus layer is a permeable gel overlying intestinal epithelial cells, separating them from gut luminal content, including commensal bacteria and invading pathogens [17]. Regarding its numerous reported effects, the weaning-associated feed deprivation period could play a role in the etiology of post-weaning intestinal dysbiosis due to the depletion of nutrients and the increased degradation of mucins and lead to a higher risk of developing enteric infections called post-weaning diarrhea. There is a real need to find non-antibiotic solutions such as dietary compounds, prebiotics or probiotics, and restore gut microbial balance at weaning

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call