Abstract

To explain the Pareto tail behavior empirically observed in wealth distributions, the quantitative macro literature has occasionally assumed that agents have random discount factors. This paper formally proves that the stationary wealth distribution in a simple Huggett model with random discounting has power law tails and characterizes the Pareto exponents analytically. I find that in general there is no clear relationship between the return on wealth and inequality and that the Pareto exponent is highly sensitive to the persistence of the discount factor process. I also provide a practical guidance for how to characterize the Pareto exponents in richer models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.