Abstract
In this paper, we investigate the weak-type regularity of the Bergman projection. The two domains we focus on are the polydisc and the Hartogs triangle. For the polydisc, we provide a proof that the weak-type behavior is of ‘ L log L ’ type. This result is likely known to the experts, but does not appear to be in the literature. For the Hartogs triangle, we show that the operator is of weak-type (4,4); settling the question of the behavior of the projection at this endpoint. At the other endpoint of interest, we show that the Bergman projection is not of weak-type ( 4 3 , 4 3 ) and provide evidence as to what the correct behavior at this endpoint might be.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.