Abstract

Point cloud salient object detection (PCSOD) is a newly proposed task in 3D dense segmentation. However, the acquisition of accurate 3D dense annotations comes at a high cost, severely limiting the progress of PCSOD. To address this issue, we propose the first weakly supervised PCSOD (named WeakPCSOD) model, which relies solely on cheap 3D bounding box annotations. In WeakPCSOD, we extract noise-free supervision from coarse 3D bounding boxes while mitigating shape biases inherent in box annotations. To achieve this, we introduce a novel mask-to-box (M2B) transformation and a color consistency (CC) loss. The M2B transformation, from a shape perspective, disentangles predictions from labels, enabling the extraction of noiseless supervision from labels while preserving object shapes independently of the box bias. From an appearance perspective, we further introduce the CC loss to provide dense supervision, which mitigates the non-unique predictions stemming from weak supervision and substantially reduces prediction variability. Furthermore, we employ a self-training (ST) strategy to enhance performance by utilizing high-confidence pseudo labels. Notably, the M2B transformation, CC loss, and ST strategy are seamlessly integrated into any model and incur no computational costs for inference. Extensive experiments demonstrate the effectiveness of our WeakPCSOD model, even comparable to fully supervised models utilizing dense annotations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.