Abstract
State-of-the-art methods treat pedestrian attribute recognition as a multi-label image classification problem. The location information of person attributes is usually eliminated or simply encoded in the rigid splitting of whole body in previous work. In this paper, we formulate the task in a weakly-supervised attribute localization framework. Based on GoogLeNet, firstly, a set of mid-level attribute features are discovered by novelly designed detection layers, where a max-pooling based weakly-supervised object detection technique is used to train these layers with only image-level labels without the need of bounding box annotations of pedestrian attributes. Secondly, attribute labels are predicted by regression of the detection response magnitudes. Finally, the locations and rough shapes of pedestrian attributes can be inferred by performing clustering on a fusion of activation maps of the detection layers, where the fusion weights are estimated as the correlation strengths between each attribute and its relevant mid-level features. Extensive experiments are performed on the two currently largest pedestrian attribute datasets, i.e. the PETA dataset and the RAP dataset. Results show that the proposed method has achieved competitive performance on attribute recognition, compared to other state-of-the-art methods. Moreover, the results of attribute localization are visualized to understand the characteristics of the proposed method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.