Abstract

Product reviews are valuable for upcoming buyers in helping them make decisions. To this end, different opinion mining techniques have been proposed, where judging a review sentence's orientation (e.g., positive or negative) is one of their key challenges. Recently, deep learning has emerged as an effective means for solving sentiment classification problems. A neural network intrinsically learns a useful representation automatically without human efforts. However, the success of deep learning highly relies on the availability of large-scale training data. We propose a novel deep learning framework for product review sentiment classification which employs prevalently available ratings as weak supervision signals. The framework consists of two steps: (1) learning a high level representation (an embedding space) which captures the general sentiment distribution of sentences through rating information; and (2) adding a classification layer on top of the embedding layer and use labeled sentences for supervised fine-tuning. We explore two kinds of low level network structure for modeling review sentences, namely, convolutional feature extractors and long short-term memory. To evaluate the proposed framework, we construct a dataset containing 1.1M weakly labeled review sentences and 11,754 labeled review sentences from Amazon. Experimental results show the efficacy of the proposed framework and its superiority over baselines.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.