Abstract

Weakly-supervised action localization requires training a model to localize the action segments in the video given only video level action label. It can be solved under the Multiple Instance Learning (MIL) framework, where a bag (video) contains multiple instances (action segments). Since only the bag's label is known, the main challenge is assigning which key instances within the bag to trigger the bag's label. Most previous models use attention-based approaches applying attentions to generate the bag's representation from instances, and then train it via the bag's classification. These models, however, implicitly violate the MIL assumption that instances in negative bags should be uniformly negative. In this work, we explicitly model the key instances assignment as a hidden variable and adopt an Expectation-Maximization (EM) framework. We derive two pseudo-label generation schemes to model the E and M process and iteratively optimize the likelihood lower bound. We show that our EM-MIL approach more accurately models both the learning objective and the MIL assumptions. It achieves state-of-the-art performance on two standard benchmarks, THUMOS14 and ActivityNet1.2.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.