Abstract

Detection of power lines in aerial images is an important problem to prevent accidents of unmanned aerial vehicles operating at low altitudes in the electrical industry. Recently, pixel-level power line detection using deep learning has been studied but production of the pixel-level annotations for massive dataset is difficult. In this study, we propose a power line detection algorithm using weakly supervised learning method to reduce the labeling cost for dataset generation. The algorithm is divided into two stages. First, an approximately localized mask was generated based on a convolutional neural network which was trained with only patch-level labels. Second, recursive training of segmentation network with refined broken line segments was executed. A refinement algorithm, line segment connecting (LSC) is a power-line-specialized refinement module that connects broken lines by approximating the segments as partially straight. In proposed algorithm, predicted image at each recursive step was updated as a label of the next training and the label was developed by itself with LSC. The comprehensive experimental results of our algorithm showed state-of-art F1-score of 94.3% in weakly supervised learning approaches on public dataset. This result suggests that the proposed algorithm is useful for low labeling cost with high performance in line detection application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.