Abstract
The construction and population of large knowledge bases have been widely explored in the past few years. Many techniques were developed in order to accomplish this purpose. Association rule mining algorithms can also be used to help populate these knowledge bases. Nevertheless, analyzing the amount of association rules generated can be a challenge and time-consuming task. The technique described in this article aims to eliminate irrelevant association rules in order to facilitate the rules evaluation process. To achieve that, this article presents a weakly supervised learning technique to prune irrelevant association rules. The proposed method uses irrelevant rules already discovered in past iterations and prunes off those with the same pattern. Experiments showed that the new technique can reduce and eliminate the amount of rules by about 60%, decreasing the effort required to evaluate them.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.