Abstract

Localizing objects of interest in images when provided with only image-level labels is a challenging visual recognition task. Previous efforts have required carefully designed features and have difficulty in handling images with cluttered backgrounds. Up-scaling to large datasets also poses a challenge to applying these methods to real applications. In this paper, we propose an efficient and effective learning framework called MILinear, which is able to learn an object localization model from large-scale data without using bounding box annotations. We integrate rich general prior knowledge into a learning model using a large pre-trained convolutional network. Moreover, to reduce ambiguity in positive images, we present a bag-splitting algorithm that iteratively generates new negative bags from positive ones. We evaluate the proposed approach on the challenging Pascal VOC 2007 dataset, and our method outperforms other state-of-the-art methods by a large margin; some results are even comparable to fully supervised models trained with bounding box annotations. To further demonstrate scalability, we also present detection results on the ILSVRC 2013 detection dataset, and our method outperforms supervised deformable part-based model without using box annotations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call