Abstract

Central serous chorioretinopathy (CSCR) is a common fundus disease. Early detection of CSCR is of great importance to prevent visual loss. Therefore, a novel automatic detection method is presented in this paper which integrates technologies including discrete wavelet transform (DWT) image decomposition, local binary patterns (LBP) based texture feature extraction, and multi-instance learning (MIL). LBP is selected due to its robustness to low contrast and low quality images, which can reduce the interference of image itself on the detection method. DWT image decomposition provides high-frequency components with rich details for extracting LBP texture features, which can remove redundant information that is not necessary for diagnosis of CSCR in the raw image. The tedious task of accurately locating and segmenting CSCR lesions is avoided by using MIL. Experiments on 358 optical coherence tomography (OCT) B-scan images demonstrate the effectiveness of our method. Even under the condition of single threshold, the accuracy of 99.58% is obtained at K = 35 by only using a high-frequency feature fusion scheme, which is competitive with the existing methods. Additionally, through further detail innovation, such as multi-threshold optimization (MTO) and integrated decision-making (IDM), the performance of our method is further improved and the detection accuracy is 100% at K = 40.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call