Abstract

Background and ObjectivesAge-related macular degeneration (AMD) is a degenerative disorder affecting the macula, a key area of the retina for visual acuity. Nowadays, AMD is the most frequent cause of blindness in developed countries. Although some promising treatments have been proposed that effectively slow down its development, their effectiveness significantly diminishes in the advanced stages. This emphasizes the importance of large-scale screening programs for early detection. Nevertheless, implementing such programs for a disease like AMD is usually unfeasible, since the population at risk is large and the diagnosis is challenging. For the characterization of the disease, clinicians have to identify and localize certain retinal lesions. All this motivates the development of automatic diagnostic methods. In this sense, several works have achieved highly positive results for AMD detection using convolutional neural networks (CNNs). However, none of them incorporates explainability mechanisms linking the diagnosis to its related lesions to help clinicians to better understand the decisions of the models. This is specially relevant, since the absence of such mechanisms limits the application of automatic methods in the clinical practice. In that regard, we propose an explainable deep learning approach for the diagnosis of AMD via the joint identification of its associated retinal lesions. MethodsIn our proposal, a CNN with a custom architectural setting is trained end-to-end for the joint identification of AMD and its associated retinal lesions. With the proposed setting, the lesion identification is directly derived from independent lesion activation maps; then, the diagnosis is obtained from the identified lesions. The training is performed end-to-end using image-level labels. Thus, lesion-specific activation maps are learned in a weakly-supervised manner. The provided lesion information is of high clinical interest, as it allows clinicians to assess the developmental stage of the disease. Additionally, the proposed approach allows to explain the diagnosis obtained by the models directly from the identified lesions and their corresponding activation maps. The training data necessary for the approach can be obtained without much extra work on the part of clinicians, since the lesion information is habitually present in medical records. This is an important advantage over other methods, including fully-supervised lesion segmentation methods, which require pixel-level labels whose acquisition is arduous. ResultsThe experiments conducted in 4 different datasets demonstrate that the proposed approach is able to identify AMD and its associated lesions with satisfactory performance. Moreover, the evaluation of the lesion activation maps shows that the models trained using the proposed approach are able to identify the pathological areas within the image and, in most cases, to correctly determine to which lesion they correspond. ConclusionsThe proposed approach provides meaningful information—lesion identification and lesion activation maps—that conveniently explains and complements the diagnosis, and is of particular interest to clinicians for the diagnostic process. Moreover, the data needed to train the networks using the proposed approach is commonly easy to obtain, what represents an important advantage in fields with particularly scarce data, such as medical imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.