Abstract

Image-space auxiliary features such as surface normal have significantly contributed to the recent success of Monte Carlo (MC) reconstruction networks. However, path-space features, another essential piece of light propagation, have not yet been sufficiently explored. Due to the curse of dimensionality, information flow between a regression loss and high-dimensional path-space features is sparse, leading to difficult training and inefficient usage of path-space features in a typical reconstruction framework. This paper introduces a contrastive manifold learning framework to utilize path-space features effectively. The proposed framework employs weakly-supervised learning that converts reference pixel colors to dense pseudo labels for light paths. A convolutional path-embedding network then induces a low-dimensional manifold of paths by iteratively clustering intra-class embeddings, while discriminating inter-class embeddings using gradient descent. The proposed framework facilitates path-space exploration of reconstruction networks by extracting low-dimensional yet meaningful embeddings within the features. We apply our framework to the recent image- and sample-space models and demonstrate considerable improvements, especially on the sample space. The source code is available at https://github.com/Mephisto405/WCMC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.