Abstract

The general meshless local Petrov-Galerkin (MLPG) weak forms of the displacement and traction boundary integral equations (BIEs) are presented for solids undergoing small deformations. Using the directly derived non-hyper-singular integral equations for displacement gradients, simple and straight-forward derivations of weakly singular traction BIEs for solids undergoing small deformations are also presented. As a framework for meshless approaches, the MLPG weak forms provide the most general basis for the numerical solution of the non-hyper-singular displacement and traction BIEs. By employing the various types of test functions, several types of MLPG/BIEs are formulated. Numerical examples show that the present methods are very promising, especially for solving the elastic problems in which the singularities in displacements, strains, and stresses are of primary concern.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.