Abstract

We introduce the notion of a weakly quasi-o-minimal model and prove that such models lack the independence property. We show that every weakly quasi-o-minimal ordered group is Abelian, every divisible Archimedean weakly quasi-o-minimal ordered group is weakly o-minimal, and every weakly o-minimal quasi-o-minimal ordered group is o-minimal. We also prove that every weakly quasi-o-minimal Archimedean ordered ring with nonzero multiplication is a real closed field that is embeddable into the field of reals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.