Abstract

We consider the class of weakly porous sets in Euclidean spaces. As our first main result we show that the distance weight w(x)=dist(x,E)−α belongs to the Muckenhoupt class A1, for some α>0, if and only if E⊂Rn is weakly porous. We also give a precise quantitative version of this characterization in terms of the so-called Muckenhoupt exponent of E. When E is weakly porous, we obtain a similar quantitative characterization of w∈Ap, for 1<p<∞, as well. At the end of the paper, we give an example of a set E⊂R which is not weakly porous but for which w∈Ap∖A1 for every 0<α<1 and 1<p<∞.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.