Abstract
We investigate the strong deflection limit of gravitational lensing by a Schwarzschild black hole embedded in an external gravitational field. The study of this model, analogous to the Chang & Refsdal lens in the weak deflection limit, is important to evaluate the gravitational perturbations on the relativistic images that appear in proximity of supermassive black holes hosted in galactic centers. By a simple dimensional argument, we prove that the tidal effect on the light ray propagation mainly occurs in the weak field region far away from the black hole and that the external perturbation can be treated as a weak field quadrupole term. We provide a description of relativistic critical curves and caustics and discuss the inversion of the lens mapping. Relativistic caustics are shifted and acquire a finite diamond shape. Sources inside the caustics produce four sequences of relativistic images. On the other hand, retro-lensing caustics are only shifted while remaining point-like to the lowest order.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.