Abstract

A weakly nonlinear stability theory in terms of Landau equation is developed to analyze the nonlinear saturation of stably stratified non-isothermal Poiseuille flow in a vertical channel. The results are presented with respect to fluids: mercury, gases, liquids, and heavy oils. The weakly nonlinear stability results predict only the supercritical instability, in agreement with the published result [Y. C. Chen and J. N. Chung, “A direct numerical simulation of K and H-type flow transition in heated vertical channel,” Comput. Fluids 32, 795–822 (2003)] based on direct numerical simulation. Apart from this, the influence of nonlinear interaction among different superimposed waves on the heat transfer rate, real part of wavespeed, and friction coefficient on the wall is also investigated. A substantial enhancement (reduction) in heat transfer rate (friction coefficient) is found for liquids and heavy oils from the basic state beyond the critical Rayleigh number. The amplitude analysis indicates that the equilibrium amplitude decreases on increasing the value of Reynolds number. However, in the case of mercury, influence of nonlinear interaction on the variation of equilibrium amplitude, heat transfer rate, wavespeed, as well as friction coefficient is complex and subtle. The analysis of the nonlinear energy spectra for the disturbance also supports the supercritical instability at and beyond the critical point. Finally, the effect of superimposed waves on the pattern of secondary flow, based on linear stability theory, is also studied. It has been found that the impact of nonlinear interaction of waves on the pattern of secondary flow for mercury is weak compared to gases, which is the consequence of negligible modification in the buoyant production of disturbance kinetic energy of the mercury.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.