Abstract
This paper investigates the stability of a thin liquid film with condensation effects during spin coating. A generalized nonlinear kinematic model is derived by the long-wave perturbation method to represent the physical system. The weakly nonlinear dynamics of a film flow are studied by the multiple scales method. The Ginzburg–Landau equation is determined to discuss the necessary conditions of the various states of the critical flow states, namely, subcritical stability, subcritical instability, supercritical stability, and supercritical explosion. The study reveals that decreasing the rotation number and the radius of the rotating circular disk generally stabilizes the flow.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.