Abstract
We consider an electrically conducting rotating fluid governed by the shallow water magnetohydrodynamic equations with no diffusion. We use an a priori asymptotic technique (the method of geometric optics or ray method) to study weakly nonlinear hydromagnetic waves. These waves are intermediate in length in the following sense: they are much longer than the fluid depth but much shorter than the radius of the earth. The time scale for the waves is much longer than that of the free surface oscillations and the approximation varies on an even longer timescale. The waves we are considering are studied in the beta plane approximation for an ambient magnetic field parallel to the equator which varies in the direction perpendicular to the equator. The leading order approximation gives a dispersion relation for the waves, which are generally found to be confined to bands about the equator as well as in bands at higher and lower latitudes. At the next order of approximation, a conservation law is found for the wave amplitude. We also obtain an equation governing the behavior of the leading order mean azimuthal velocity which is forced to grow linearly with time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.