Abstract

A study of thermal instability driven by buoyancy force is carried out in an initially quiescent infinitely extended horizontal rotating fluid layer. The temperature at the boundaries has been taken to be time-periodic, governed by the sinusoidal function. A weakly nonlinear stability analysis has been performed for the oscillatory mode of convection, and heat transport in terms of the Nusselt number, which is governed by the complex form of Ginzburg–Landau equation (CGLE), is calculated. The influence of external controlling parameters such as amplitude and frequency of modulation on heat transfer has been investigated. The dual effect of rotation on the system for the oscillatory mode of convection is found either to stabilize or destabilize the system. The study establishes that heat transport can be controlled effectively by a mechanism that is external to the system. Further, the bifurcation analysis also presented and established that CGLE possesses the supercritical bifurcation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.