Abstract

The paper discusses three-dimensional models of the propagation of stochastic internal waves in hydrodynamic systems: ’half-space - half-space’, ’half-space - layer with rigid lid’, and ’layer with solid bottom - layer with rigid lid’. In constructing the models, the layers are considered to be ideal fluids separated by a contact surface. The main objective of the modeling is to obtain a dynamic equation for the stochastic amplitude of surface waves. A comparative analysis of the obtained results has been conducted. In order to control the contribution of nonlinear terms, a dimensionless non-numerical parameter has been introduced. The models are distinguished by boundary conditions that determine the general form of solutions. As a result, a dynamic equation for the stochastic amplitude of internal waves has been derived. After ensemble averaging of the amplitudes, the dynamic equation is formulated in integral form using Fourier-Stieltjes integrals. The dynamic equation reveals two-wave and three-wave interactions, as well as the contribution of dispersion to wave dynamics. An investigation of the boundary case of the transition of internal waves in the ’half-space - half-space’ system to surface waves in the absence of an upper liquid layer confirms the validity of the results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.