Abstract
AbstractA second-order instability analysis has been performed for sinuous disturbances on two-dimensional planar viscous sheets moving in a stationary gas medium using a perturbation technique. The solutions of second-order interface disturbances have been derived for both temporal instability and spatial instability. It has been found that the second-order interface deformation of the fundamental sinuous wave is varicose or dilational, causing disintegration and resulting in ligaments which are interspaced by half a wavelength. The interface deformation has been presented; the breakup time for temporal instability and breakup length for spatial instability have been calculated. An increase in Weber number and gas-to-liquid density ratio extensively increases both the temporal or spatial growth rate and the second-order initial disturbance amplitude, resulting in a shorter breakup time or length, and a more distorted surface deformation. Under normal conditions, viscosity has a stabilizing effect on the first-order temporal or spatial growth rate, but it plays a dual role in the second-order disturbance amplitude. The overall effect of viscosity is minor and complicated. In the typical condition, in which the Weber number is 400 and the gas-to-liquid density ratio is 0.001, viscosity has a weak stabilizing effect when the Reynolds number is larger than 150 or smaller than 10; when the Reynolds number is between 150 and 10, viscosity has a weak destabilizing effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.