Abstract
We consider the Saintillan–Shelley kinetic model of active rod-like particles in Stokes flow (Saintillan & Shelley, Phys. Rev. Lett., vol. 100, issue 17, 2008a, 178103; Saintillan & Shelley, Phys. Fluids, vol. 20, issue 12, 2008b, 123304), for which the uniform isotropic suspension of pusher particles is known to be unstable in certain settings. Through weakly nonlinear analysis accompanied by numerical simulations, we determine exactly how the isotropic steady state loses stability in different parameter regimes. We study each of the various types of bifurcations admitted by the system, including both subcritical and supercritical Hopf and pitchfork bifurcations. Elucidating this system's behaviour near these bifurcations provides a theoretical means of comparing this model with other physical systems that transition to turbulence, and makes predictions about the nature of bifurcations in active suspensions that can be explored experimentally.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.