Abstract

We investigate the conductivity in layered metals in magnetic field in the weakly incoherent limit, when the interlayer transfer integral is smaller than the Landau level broadening due to the impurity potential, but the interlayer electron tunnelling conserves the intralayer momentum. It is shown that the impurity potential has much stronger effect in this regime, than in the quasi-2D metals in the coherent limit. The weakly incoherent regime has several new qualitative features, not found in the previous theoretical approaches. The background interlayer magnetoresistance in this regime monotonically grows with increasing of magnetic field perpendicular to the conducting layers. The effective electron mean free time is considerably shorter than in the coherent regime and decreases with magnetic field. This enhances the role of higher harmonics in the angular magnetoresistance oscillations and increases the Dingle temperature, which damps the magnetic quantum oscillations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call