Abstract
Abstract Mock Walker cells driven by weak sea surface temperature (SST) forcing are studied using planetary-scale cloud system–resolving simulations and a simplified framework that represents convection with its linear response functions and parameterizes the large-scale flow based on the gravity wave equation. For sinusoidal SST forcings of the same amplitude, as the horizontal domain size increases, the mock Walker cells strengthen substantially and shorter vertical scales in the vertical velocity profile diminish. This is explained by the fact that temperature anomalies required to sustain a vertical velocity profile of given amplitude are stronger in cases of larger horizontal and smaller vertical scales. Such temperature anomalies become significant at planetary scales so that properly accounting for the horizontal momentum balance, including convective momentum transport (CMT), becomes necessary, while a weak temperature gradient approach that neglects horizontal momentum balance is no longer adequate. The downward advection component of the CMT in particular is important for capturing a number of features of the mock Walker cells. The extent of convective organization also affects the mock Walker cell through its effects on the sensitivities of convective heating and moistening to temperature and moisture anomalies. For strongly organized convection with deep inflows, these sensitivities are consistent with a layer mode of convective overturning, instead of the parcel mode as in unorganized convection, resulting in a weaker second baroclinic component in the mock Walker cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.