Abstract

The classification of phase transitions in first-order and second-order (or continuous) ones is widely used. The nematic-to-isotropic (NI) transition in liquid crystals is a weakly first-order transition, with only small discontinuities in enthalpy and specific volume at the transition which are not always easy to measure. On the other hand, fluctuation effects near the transition, typical for a continuous transition, are present because of the only weakly first-order character. In a recent paper [Phys. Rev. E 69, 022701 (2004)], it was concluded from the static dielectric permittivity in the isotropic phase near the NI transition that less polar mesogens (with little or no pretransitional effects) are characteristic for a first-order NI phase transition, whereas in the case of strongly polar ones (with large pretransitional effects) the NI transition is close to second order. In this paper, we address the question whether it is, indeed, possible to use these fluctuation effects in the isotropic phase to quantify the "strength" of a weakly first-order transition, i.e., how far it is from second order. Therefore, we measured the temperature dependence of the enthalpy near the NI transition of seven liquid crystals with adiabatic scanning calorimetry and compared the measured values of the latent heat with pretransitional effects in the dielectric constant and the specific heat capacity. The compounds used in the comparison are MBBA, 5CB, 8CB, 5NCS, 5CN, 8CHBT, and D7AB. From our analysis we find, contrary to the assertion in the above reference, no correlation between the strength of the NI transition of a given compound and the pretransitional effects observed, neither dielectrically, nor thermally.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.