Abstract
Min–max problems have broad applications in machine learning, including learning with non-decomposable loss and learning with robustness to data distribution. Convex–concave min–max problem is an active topic of research with efficient algorithms and sound theoretical foundations developed. However, it remains a challenge to design provably efficient algorithms for non-convex min–max problems with or without smoothness. In this paper, we study a family of non-convex min–max problems, whose objective function is weakly convex in the variables of minimization and is concave in the variables of maximization. We propose a proximally guided stochastic subgradient method and a proximally guided stochastic variance-reduced method for the non-smooth and smooth instances, respectively, in this family of problems. We analyse the time complexities of the proposed methods for finding a nearly stationary point of the outer minimization problem corresponding to the min–max problem.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.