Abstract
A real number x is recursively approximable if it is a limit of a computable sequence of rational numbers. If, moreover, the sequence is increasing (decreasing or simply monotonic), then x is called left computable (right computable or semi-computable). x is called weakly computable if it is a difference of two left computable real numbers. We show that a real number is weakly computable if and only if there is a computable sequence (xs)s∈N of rational numbers which converges to x weakly effectively, namely the sum of jumps of the sequence is bounded. It is also shown that the class of weakly computable real numbers extends properly the class of semi-computable real numbers and the class of recursively approximable real numbers extends properly the class of weakly computable real numbers.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.