Abstract

The matrix-isolated infrared spectrum of a hydrogen cyanide-methyl chloride complex was investigated in a solid argon matrix. HCN and CH3Cl were co-condensed onto a substrate held at 10 K with an excess of argon gas, and the infrared spectrum was measured using Fourier-transform infrared spectroscopy. Quantum chemical geometry optimization, harmonic frequency, and natural bonding orbital calculations indicate stabilized hydrogen- and halogen-bonded structures. The two resulting weakly bound complexes are both composed of one CH3Cl molecule bound to a (HCN)3 subunit, where the three HCN molecules are bound head-to-tail in a ring formation. Our study suggests that─in the presence of CH3Cl─the formation of (HCN)3 is promoted through complexation. Since HCN aggregates are an important precursor to prebiotic monomers (amino acids and nucleobases) and other life-bearing polymers, this study has astrophysical implications toward the search for life in space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.