Abstract
Let X be a compact metric space and f : X → X be a continuous map. In this paper, ergodic chaos and strongly ergodic chaos are introduced, and it is proven that f is strongly ergodically chaotic if f is transitive but not minimal and has a full measure center. In addition, some sufficient conditions for f to be Ruelle–Takens chaotic are presented. For instance, we prove that f is Ruelle–Takens chaotic if f is transitive and there exists a countable base [Formula: see text] of X such that for each i > 0, the meeting time set N(Ui, Ui) for Ui with respect to itself has lower density larger than [Formula: see text].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.