Abstract

We propose a scheme to induce weak-light nonlinearity in a double quantum dot. The scheme positively utilizes locality and dissipation of an external auxiliary system. As a plausible setup, we consider a complex system in which a localized plasmon field from a metallic nanotip couples with only one of the coupled quantum dots. The perturbative calculation with respect to the light intensity shows that, even by a sufficiently weak light, a dipole-forbidden two-exciton NOON state is prepared as the steady state. This result can be explained by combining the two factors: decoherence-induced quantum state preparation and two-photon resonance. The present work implies that the positive usage of both the locality and the dissipation in the external auxiliary system is promising for inducing two-photon processes effectively, and provides one guideline to weak-light nonlinearities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.