Abstract

In this paper we study a weaker form of the classical concept of Menger property. This property, called weakly Menger, is independent from the Menger property and the almost Menger property. In particular, for Tychonoff spaces weaker Menger spaces are not equivalent to almost Menger spaces. We give some characterizations in terms of regular open sets and almost continuous mappings. We also introduce a weaker form of the star-Menger property and the notion of almost γk -set. Some open questions are given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.