Abstract
Over the past century, Northern Hemisphere (NH) land monsoon rainfall (NHLMR) experienced significant decadal to multidecadal variations, mainly driven by an east–west sea surface temperature (SST) contrast over the Pacific (EWPC) and an interhemispheric North Atlantic–South Indian Ocean SST dipole (NAID). However, how the NHLMR’s decadal variation would vary and whether the oceanic forcing could continue to drive it in a warming world remain unexplored. Here, by analyzing 24 Coupled Model Intercomparison Project Phase 6 (CMIP6) models’ historical simulations and future projections, we show that the leading mode of decadal NHLMR will retain its nearly-uniform spatial pattern and representation of the NHLMR’s intensity. In the future, the significant periodicities of decadal NHLMR are shortened as emissions levels increase. The intensity of decadal NHLMR variation will experience a comprehensive decline under various emission scenarios, which may link to the weakened intensity of NAID and EWPC. Although the relationship between EWPC and decadal NHLMR is slightly weakened in the future, EWPC will remain a primary driver while NAID is no longer. The significant historical correlation between NAID and NHLMR is mainly attributed to the influence of increased anthropogenic aerosols emission. However, the NAID-NHLMR linkage would no longer exist owing to the decline of anthropogenic aerosol emission in the future.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.