Abstract
Many benthic marine organisms produce calcium carbonate (CaCO3) structures for mechanical protection through a biologically controlled calcification process. However, the oceans are becoming unfavorable for calcification because of the stress associated with ocean acidification (OA) and associated chemical changes such as declining saturation state of CaCO3 and decreasing seawater pH. This work studies the impacts of OA-driven decreased pH on the calcareous tubes produced by the serpulid tubeworm Hydroides elegans. Tubes grown under control and OA experimental conditions were measured for structural and mechanical properties, and their mechanical properties were further interpreted using finite element analysis (FEA). The near-future predicted pH value of 7.8 altered tube ultrastructure, volume, and density and decreased the mean tube hardness and elasticity by ∼ 80 and ∼ 70%, respectively. The crushing force required for breaking the tube was reduced by 64%. The FEA results demonstrated how a simulated predator attack may affect the structure with different structural and mechanical properties and consequently shift the stress development and distribution in the tubes, causing a more concentrated stress distribution and therefore leading to a lower ability to withstand attacks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.