Abstract

Hard coatings have been widely applied to enhance tribological performance of mechanical components. However, it was predicted that thin hard coatings may have a weakening effect which could reduce the coating/substrate system’s resistance to plastic yielding compared with the uncoated substrate material. In this paper, analytical simulation is utilized to investigate the origin of weakening effect. The functions of material mechanical properties and coating thickness on the weakening effect are theoretically investigated. Partial-unloading spherical nanoindentation tests are performed on tungsten coated single crystalline silicon and copper to acquire the stress-strain curves and compared with the uncoated cases. The experimental results are in consistence with the analytical solutions, demonstrating the presence of weakening effect.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.