Abstract

The Atlantic Meridional Overturning Circulation (AMOC) is an active component of the Earth’s climate system1 and its response to global warming is of critical importance to society. Climate models have shown an AMOC slowdown under anthropogenic warming since the industrial revolution2–4, but this slowdown has been difficult to detect in the short observational record5–10 because of substantial interdecadal climate variability. This has led to the indirect detection of the slowdown from longer-term fingerprints11–14 such as the subpolar North Atlantic ‘warming hole’11. However, these fingerprints, which exhibit some uncertainties15, are all local indicators of AMOC slowdown around the subpolar North Atlantic. Here we show observational and modelling evidence of a remote indicator of AMOC slowdown outside the North Atlantic. Under global warming, the weakening AMOC reduces the salinity divergence and then leads to a ‘salinity pile-up’ remotely in the South Atlantic. This evidence is consistent with the AMOC slowdown under anthropogenic warming and, furthermore, suggests that this weakening has likely occurred all the way into the South Atlantic. The slowdown in the Atlantic Meridional Overturning Circulation (AMOC) is remotely detected in an increasing South Atlantic salinity trend. This salinity pile-up is caused by reduced divergence of surface salinity transport under a weakened AMOC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.