Abstract

A great challenge for haze pollution mitigation with the existing emission control measures in China is ozone (O3) increase. The chemical processes leading to weakened haze mitigation are still poorly understood. Our work identifies the enhanced aging chemistries of black carbon (BC) with increasing O3 as an essential driver to weaken haze mitigation based on field observations during autumn/winter haze periods in 2014 and 2018 in North China Plain. The enhanced atmospheric oxidation capacity induced by increasing O3 promotes the initial aging of accumulated fresh BC from continuous emission under haze pollution conditions and consequently improves the hygroscopicity of BC-containing particles to provide more particulate surfaces and volumes for aqueous and heterogeneous chemistries. The enhanced BC aging amplifies PM2.5 concentrations by ∼20%, which can be broken by concurrent reductions in multipollutant emissions (i.e., BC, nitrogen oxides, and volatile organic compounds), especially from residential and industrial sources. Moreover, enhanced BC aging implies an adverse effect of O3 increase on climate change. Observationally enhanced BC aging will help to constrain estimations of the interactions among O3 increase, haze pollution, and climate warming in recent years in China.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.