Abstract

Using large-scale simulations based on matrix product state and quantum Monte Carlo techniques, we study the superfluid to Bose glass-transition for one-dimensional attractive hard-core bosons at zero temperature, across the full regime from weak to strong disorder. As a function of interaction and disorder strength, we identify a Berezinskii-Kosterlitz-Thouless critical line with two different regimes. At small attraction where critical disorder is weak compared to the bandwidth, the critical Luttinger parameter $K_c$ takes its universal Giamarchi-Schulz value $K_{c}=3/2$. Conversely, a non-universal $K_c>3/2$ emerges for stronger attraction where weak-link physics is relevant. In this strong disorder regime, the transition is characterized by self-similar power-law distributed weak links with a continuously varying characteristic exponent $\alpha$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.