Abstract

Weak Values (WV) and Two-State-Vector Formalism (TSVF) provide novel insights in various quantum physical and technological fields. In the first part of the paper we consider a new quantum effect of scattering accompanying an elementary collision of two quantum systems A and B, in which the latter interacts with a quantum environment. In clear contrast to a classical environment, the quantum case can exhibit counter-intuitive effects of momentum- and energy-transfer which contradict conventional expectations. Experimental evidence of a new effect—deficit of momentum transfer (equivalently: reduced effective mass) in a neutron-atom collision—is presented and theoretically interpreted. Here, non-relativistic incoherent inelastic neutron scattering (INS) is applied. INS on single H2 molecules confined in multi-walled carbon nanotube channels has been experimentally investigated. Interpreted within conventional theory, the results reveal a counter-intuitive reduced effective mass of the recoiling H2 molecule, i.e. M = 0.64 a.m.u. (atomic mass units). In contrast, this finding has a simple qualitative interpretation within WV and TSVF theory. In the second part of the paper we report on current experimental and theoretical investigations in the field of X-ray diffraction (XRD), which belongs to coherent scattering. Preliminary XRD results from cubic crystalline materials show a surprising variation of the measured lattice parameter (usually called “lattice constant”) with momentum transfer. A first theoretical model of the effect in the light of the new theory is presented. These findings give further evidence for the broad character and significance of the novel WV and TSVF theory.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call