Abstract

The weak-value-amplification technique has shown great importance in the measurement of tiny physical effects. Here we introduce a polarization-dependent angular velocity measurement system consisting of two Glan prisms and a true zero-order half-wave plate, where a non-Fourier-limited Gaussian pulse acts as the meter. The angular velocities measurements results agree well with theoretical predictions, and its uncertainties are bounded by the Cramér-Rao bound. We also investigate uncertainties of angular velocities for different numbers of detected photons and the smallest reliable postselection probability, which can reach ${3.42*10^{- 6}}$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.