Abstract

Let \(v = (v_1, \ldots , v_n)\) be a vector in \(\mathbb {R}^n {\setminus } \{ 0 \}\). Consider the Laplacian on \(\mathbb {R}^n\) with drift \(\Delta _{v} = \sum _{i = 1}^n \Big ( \frac{\partial ^2}{\partial x_i^2} + 2 v_i \frac{\partial }{\partial x_i} \Big )\) and the measure \(d\mu (x) = e^{2 \langle v, x \rangle } dx\), with respect to which \(\Delta _{v}\) is self-adjoint. Let d and \(\nabla \) denote the Euclidean distance and the gradient operator on \(\mathbb {R}^n\). Consider the space \((\mathbb {R}^n, d, d\mu )\), which has the property of exponential volume growth. We obtain weak type (1, 1) for the Riesz transform \(\nabla (- \Delta _{v} )^{-\frac{1}{2}}\) and for the heat maximal operator, with respect to \(d\mu \). Further, we prove that the uncentered Hardy–Littlewood maximal operator is bounded on \(L^p\) for \(1 < p \le +\infty \) but not of weak type (1, 1) if \(n \ge 2\).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call