Abstract

We study the long-time evolution of waves of a thin elastic plate in the limit of small deformation so that modes of oscillations interact weakly. According to the theory of weak turbulence (successfully applied in the past to plasma, optics, and hydrodynamic waves), this nonlinear wave system evolves at long times with a slow transfer of energy from one mode to another. We derive a kinetic equation for the spectral transfer in terms of the second order moment. We show that such a theory describes the approach to an equilibrium wave spectrum and represents also an energy cascade, often called the Kolmogorov-Zakharov spectrum. We perform numerical simulations that confirm this scenario.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.