Abstract
We study the weak truth table (wtt) degree spectra of rst-order relational structures. We prove a dichotomy among the possible wtt degree spectra along the lines of Knight’s upward-closure theorem for Turing degree spectra. We prove new results contrasting the wtt degree spectra of nite- and innite-signature structures. We show that, as a method of dening classes of reals, the wtt degree spectrum is, except for some trivial cases, strictly more expressive than the Turing degree spectrum.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.