Abstract
The matching of remote sensing images is a critical and necessary procedure that directly impacts the correctness and accuracy of underwater topography, change detection, digital elevation model (DEM) generation, and object detection. The texture of images becomes weaker with increasing water depth, and this results in matching-extraction failure. To address this issue, a novel method, homography-based motion statistics with an epipolar constraint (HMSEC), is proposed to improve the number, reliability, and robustness of matching points for weak-textured seafloor images. In the matching process of HMSEC, a large number of reliable matching points can be identified from the preliminary matching points based on the motion smoothness assumption and motion statistics. Homography and epipolar geometry are also used to estimate the scale and rotation influences of each matching point in image pairs. The results show that the matching-point numbers for the seafloor and land regions can be significantly improved. In this study, we evaluated this method for the areas of Zhaoshu Island, Ganquan Island, and Lingyang Reef and compared the results to those of the grid-based motion statistics (GMS) method. The increment of matching points reached 2672, 2767, and 1346, respectively. In addition, the seafloor matching points had a wider distribution and reached greater water depths of −11.66, −14.06, and −9.61 m. These results indicate that the proposed method could significantly improve the number and reliability of matching points for seafloor images.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.